DLK: The “Preconditioning” Signal for Axon Regeneration?
نویسندگان
چکیده
In this issue of Neuron, Shin et al. (2012) show that the dual leucine zipper kinase (DLK) is responsible for the retrograde injury signal in spinal sensory and motor neurons. DLK is required for the accelerated regeneration seen after axotomy and for the improved regeneration seen after a conditioning injury. DLK KO axons have severely reduced axon regeneration in vivo.
منابع مشابه
Dual Leucine Zipper Kinase Is Required for Retrograde Injury Signaling and Axonal Regeneration
Here we demonstrate that the dual leucine zipper kinase (DLK) promotes robust regeneration of peripheral axons after nerve injury in mice. Peripheral axon regeneration is accelerated by prior injury; however, DLK KO neurons do not respond to a preconditioning lesion with enhanced regeneration in vivo or in vitro. Assays for activation of transcription factors in injury-induced proregenerative p...
متن کاملThe DLK signalling pathway--a double-edged sword in neural development and regeneration.
Dual leucine zipper kinase (DLK), a mitogen-activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrat...
متن کاملRegulation of DLK-1 Kinase Activity by Calcium-Mediated Dissociation from an Inhibitory Isoform
MAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leu...
متن کاملThe DLK-1 Kinase Promotes mRNA Stability and Local Translation in C. elegans Synapses and Axon Regeneration
Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influenci...
متن کاملDendrites actively restrain axon outgrowth and regeneration.
The development of approaches to regenerate neuronal connections that are lost after nervous system injury or during disease has proven enormously challenging. In the mammalian CNS the problem appears to be (at least) twofold. First, local extrinsic cues potently suppress axon outgrowth. However, efforts to blunt growth inhibitory effects of these molecules have not resulted in widespread regro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 74 شماره
صفحات -
تاریخ انتشار 2012